Peat carbon climate change

Peatlands keep a lot of carbon out of Earth’s atmosphere, but that could end with warming and development

Permafrost degradation, warming temperatures, rising sea levels, and drought are causing peatlands to lose stored carbon.

Peatlands are a type of wetland where dead plant material doesn't fully decompose because it's too soggy.


In these ecosystems, peat builds up as spongy dark soil that's sometimes referred to as sod or turf. Over thousands of years, yards-thick layers of peat accumulate and trap huge amounts of carbon, helping to cool the climate on a global scale.

But that might not be true for much longer. Warming temperatures and human actions, such as draining bogs and converting them for agriculture, threaten to turn the world's peatlands from carbon reservoirs to carbon sources.

In a newly published study, our multidisciplinary team of 70 scientists from around the world analyzed existing research and surveyed 44 leading experts to identify factors that could change peatlands' carbon balance now and in the future. We found that permafrost degradation, warming temperatures, rising sea levels and drought are causing many peatlands around the world to lose some of their stored carbon. This is in addition to rapid degradation caused by human activity.

And unless steps are taken to protect peatlands, carbon loss could accelerate.

Peatlands are found in an estimated 180 countries. Many of them have not been recognized and are not yet properly mapped. (Credit: Levi Westerveld/GRID-Arendal)

From carbon sink to carbon source

Although they only occupy 3 percent of the global land area, peatlands contain about 25 percent of global soil carbon — twice as much as the world's forests. Peatlands exist on every continent, even in Antarctica. In the U.S. they are found in many states, including Maine, Pennsylvania, Washington, and Wisconsin. These ecosystems form where partially decayed organic matter accumulates in cold soil that is nearly always wet, which dramatically slows decomposition.

But now climate change is altering those conditions. For example, in many regions of the Arctic, rapid permafrost thawing promotes microbial activity that releases greenhouse gases into the atmosphere. These microbes feed off carbon-rich peats that were once frozen.

Massive peatland fires also contribute. Recent wildfires like those in Russia are known to release as much carbon in a few months as total human carbon dioxide emissions in an entire year. And these fires are especially tricky to put out. Embers within the dense organic matter can reignite many months or even years later.

Human activities are also increasing greenhouse gas releases from these carbon-rich ecosystems. In the United Kingdom, for example, extracting peat for use in gardening has caused peatlands to emit an estimated 16 million tons of carbon every year—roughly equivalent to the annual greenhouse gas emissions from more than 12 million cars.

In Indonesia and Malaysia, as fertile land becomes increasingly scarce, peatlands are being burned, drained, and repurposed. Already, most peatlands in Indonesia have been destroyed in order to build palm oil plantations. The World Resources Institute estimates that in Indonesia and Malaysia, peatland draining results in total annual emissions equal to those of nearly 70 coal plants. These activities also endanger vulnerable animal populations, such as orangutans and various species of freshwater fish. Peatland degradation due to human activity accounts for 5-10 percent of annual carbon dioxide emissions from human activity, despite these zones' tiny geographic footprint.

Quantifying peatland carbon

Predicting how much carbon will be released from peatlands worldwide is hard to do, especially because no models can adequately represent these ecosystems and the many factors that influence their carbon balance.

Peatlands are not included in most earth system models that scientists use to make future climate change projections. There is a long-held view that peatlands are minor players in the global carbon cycle on a year-to-year basis, but our study and many others show that climate change and human intervention are making these ecosystems very dynamic. Our study highlights the need to integrate peatlands into these models; we also hope it can help direct new research.

Even though models are not ready, decisions need to be made now about how to manage peatlands. That's why we surveyed experts as a first step towards predicting the fate of peat carbon worldwide.

Based on their responses, we estimate that 100 billion tons of carbon could be emitted from peatlands by 2100 – am amount equivalent to about 10 years of emissions from all human activities, including burning fossil fuels and clearing forests. The experts we consulted have not reached a consensus, and our estimate is highly uncertain: Net changes in peat carbon over the next 80 years could range from a gain of 103 billion tons to a loss of 360 billion tons.

Not every region will be affected the same way. High-latitude peatlands might see an increase in carbon storage under a warming climate because of increased plant growth and greater peat accumulation. Tropical peats, on the other hand, are more likely to dry out and burn due to warming temperatures and human activity. These factors and human choices about peatland use will affect whether these areas become carbon sources or sinks in the future.

Overall, our results suggest that carbon releases will surpass carbon gains in the coming years, primarily because of human impacts in tropical peatlands. This switch from carbon sink to carbon source will feed a positive feedback loop, with peatlands releasing carbon that makes Earth's climate warmer, which makes peatlands release more carbon, and so on.

Despite the uncertainty in our findings, we believe our results show that peatlands should be included in climate models, and that nations should take steps to preserve them.

Toward sustainable use

A balance must be achieved between wise peatland use and local economic needs. Given how much carbon peatlands hold and how vulnerable they are, many surveyed experts believe people soon will adopt more sustainable practices for managing them. But others are not so optimistic. In regions such as the Amazon and the Congo basins, where large peatland complexes were recently discovered, it is critical to take action to preserve them.

Peatlands should also be considered in integrated assessment models that researchers use to understand climate change impacts and options for mitigating them. Models that project future socioeconomic change and carbon emission pathways could help develop incentives such as peatland carbon pricing and sustainable use practices. This would change the way these ecosystems are valued and managed.

The first step, however, is to raise awareness around the world of this precious natural resource and the consequences of continuing to exploit it.

Julie Loisel is an assistant professor of geography at Texas A&M University.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Banner photo credit: David Stanley/flickr

Why a “fracking refugee” is attending the global plastics treaty negotiations
Jill Hunkler is pictured in front of the Shaw Centre, where the plastic treaty negotiations are taking place. Credit: Allison Woolverton.

Why a “fracking refugee” is attending the global plastics treaty negotiations

“Fracking and building pipelines in order to create more poisonous plastic is ruining people’s lives.”

Jill Hunkler, an Ohio resident who considers herself a “fracking refugee,” is telling her family’s story at the global plastics treaty negotiations in Ottawa this week, where negotiators from about 175 countries are working to advance a treaty to address global plastic pollution.

Keep reading...Show less
Senator Whitehouse & climate change

Senator Whitehouse puts climate change on budget committee’s agenda

For more than a decade, Senator Sheldon Whitehouse gave daily warnings about the mounting threat of climate change. Now he has a powerful new perch.
Amid LNG’s Gulf Coast expansion, community hopes to stand in its way
Coast Guard inspects Cameron LNG Facility in preparation for first LNG export in 2019. (Credit: Coast Guard News)

Amid LNG’s Gulf Coast expansion, community hopes to stand in its way

This 2-part series was co-produced by Environmental Health News and the journalism non-profit Economic Hardship Reporting Project. See part 1 here.Este ensayo también está disponible en español
Keep reading...Show less

​Half of the world's plastic pollution can be traced back to 56 companies​

New research shows a few multinational companies, including Philip Morris International and Coca-Cola, are major contributors to global plastic pollution, a study finds.

Sofia Quaglia reports for The Guardian.

Keep reading...Show less
Houston's toxic petrochemical exports
Credit: Louis Vest/Flickr

Opinion: Houston's petrochemical exports fuel Europe's growing plastics crisis

Europe grapples with escalating plastic pollution, driven by petrochemical imports from Texas. A recent report by Amnesty International shows how some of these imported petrochemical products are linked to environmental racism, and calls for more stringent rules to restrict the proliferation of polluting plastics.

Alysha Khambay writes in euobserver.

Keep reading...Show less
Reflexiones de la próxima generación sobre el mes de la Tierra
Credit: masplashti /Unsplash

Reflexiones de la próxima generación sobre el mes de la Tierra

HOUSTON — En homenaje al Día de la Tierra, EHNe está publicando cartas de estudiantes del octavo grado de YES Prep Northbrook Middle School en el barrio de Spring Branch, Texas, que está en el área de Houston.

Keep reading...Show less

Hydrogen industry growth lags behind U.S. climate targets

Energy Secretary Jennifer Granholm highlights the slow growth of the clean hydrogen industry, posing challenges to achieving U.S. climate goals.

Christian Robles andCarlos Anchondo report for E&E News.

Keep reading...Show less

Climate crisis fuels mosquito disease spread in Europe, expert argues

Mosquito-borne diseases like malaria and dengue fever are increasing in Europe due to global warming, according to an expert.

Helena Horton reports for The Guardian.

Keep reading...Show less
From our Newsroom
youth climate change

"Our lives might be on the line"

Eighth graders reflect on the state of the planet.

sargassum

After 13 years, no end in sight for Caribbean sargassum invasion

Thousands of people were hurt by sargassum blooms last year in the Caribbean.

youth climate change

“We should take care of what is precious to us"

Eighth graders reflect on the state of the planet.

earth day 2024

Earth Day reflections from the next generation

This week we're featuring essays from Houston-area eighth graders to hear what the youth think about the state of our planet.

New EPA regulations mean a closer eye on the nation’s petrochemical hub

New EPA regulations mean a closer eye on the nation’s petrochemical hub

Houston’s fenceline communities welcome stricter federal rules on chemical plant emissions but worry about state compliance.

Stay informed: sign up for The Daily Climate newsletter
Top news on climate impacts, solutions, politics, drivers. Delivered to your inbox week days.